


Figure 1: Molecular characterization of putative IP<sub>3</sub> receptor (IP<sub>3</sub>R) from Leishmania infantum

- **(A)** Schematic representation of macronuclear sequence of putative IP<sub>3</sub>R gene *LinJ16\_V30290* from *Leishmania infantum*.
- The *LinJ16\_V30290* gene (chromosome 16) is flanked upstream by gene *LinJ16\_V30300* (putative proteasome 26S non-ATPase subunit 9) and downstream by gene *LinJ16\_V30280* (conserved hypothetical protein). The *LinJ16\_V30290* gene is intronless.
- (B) Domain structure of the *Leishmania infantum* putative IP<sub>3</sub>R.

arrow indicates the IP<sub>3</sub> binding site.

- Protein BLAST search (<a href="http://blast.ncbi.nlm.nih.gov/Blast.cgi">http://blast.ncbi.nlm.nih.gov/Blast.cgi</a>) against reference proteins from mouse (*Mus musculus*) showed that the protein encoded by *LinJ16\_V30290* had highest sequence similarity with IP<sub>3</sub>R type 2 (IP<sub>3</sub>R2) and Ryanodine receptor type 3 (RyR3) which were further used for global sequence similarity and identity analysis by the SIAS server (<a href="http://imed.med.ucm.es/Tools/sias.html">http://imed.med.ucm.es/Tools/sias.html</a>). Such analysis revealed that the putative IP<sub>3</sub>R from *Leishmania infantum* had a global sequence identity and similarity of 11.4% and 54.3% respectively with IP<sub>3</sub>R2 and 5.02% and 9.46% respectively with RyR3.
- Domain analysis was conducted using the InterProScan server (<a href="http://www.ebi.ac.uk/Tools/pfa/iprscan/">http://www.ebi.ac.uk/Tools/pfa/iprscan/</a>) and transmembrane domains were determined by the TMHMM server (<a href="http://www.cbs.dtu.dk/services/TMHMM/">http://www.cbs.dtu.dk/services/TMHMM/</a> Results are presented relative to scale of the full-length amino acid (AA) sequence of the protein.
- **(C)** Analysis of transmembrane domains of putative IP<sub>3</sub>R from *Leishmania infantum* (left) and mouse IP<sub>3</sub>R2 (right) using the TMHMM server (<a href="http://www.cbs.dtu.dk/services/TMHMM/">http://www.cbs.dtu.dk/services/TMHMM/</a>).
- **(D)** Hydrophobicity analysis of the transmembrane domains of putative IP<sub>3</sub>R from *Leishmania infantum*. Hydrophobicity plots reveal the presence of 5 transmembrane regions compared to 6 that are present in the mouse IP<sub>3</sub>R2 (see Panel C (right)).
- (E) Clustal W2.0.12 alignment of the amino acid sequence between transmembrane domains 4 and 5 of putative IP<sub>3</sub>R from *Leishmania infantum* and the amino acid sequence between transmembrane domains 5 and 6 of mouse IP<sub>3</sub>R2 and mouse RyR3. The selectivity filter of mouse IP<sub>3</sub>R2 is shown as boxed text.
- (F) Modeling of the putative IP<sub>3</sub>R-ligand binding suppressor domain of *Leishmania infantum* using the EsyPred3D homology-modelling server (<a href="http://www.fundp.ac.be/sciences/biologie/urbm/bioinfo/esypred/">http://www.fundp.ac.be/sciences/biologie/urbm/bioinfo/esypred/</a>). Structure of the IP<sub>3</sub>R-ligand binding suppressor domain of mouse IP<sub>3</sub>R type 1 (right), (ITPR1; <a href="http://www.pdb.org/pdb/explore/explore.do?structureId=1XZZ">http://www.pdb.org/pdb/explore/explore.do?structureId=1XZZ</a>) (Bosanac *et al.*, 2005) and model of the *Leishmania infantum* (Lin; left) homologous region. Numbers indicate the amino acid residues used.
- (G) Modeling of the putative IP<sub>3</sub>R-ligand binding core from *Leishmania infantum* using the EsyPred3D homology-modelling server (<a href="http://www.fundp.ac.be/sciences/biologie/urbm/bioinfo/esypred/">http://www.fundp.ac.be/sciences/biologie/urbm/bioinfo/esypred/</a>). Structure of the IP<sub>3</sub>R-ligand binding core of mouse IP<sub>3</sub>R type 1 (right), (ITPR1; <a href="http://www.pdb.org/pdb/explore/explore.do?structureId=1N4K">http://www.pdb.org/pdb/explore/explore.do?structureId=1N4K</a>) (Bosanac *et al.*, 2002) and model of the *Leishmania infantum* (Lin; left) homologous region. Numbers indicate the amino acid residues used. The

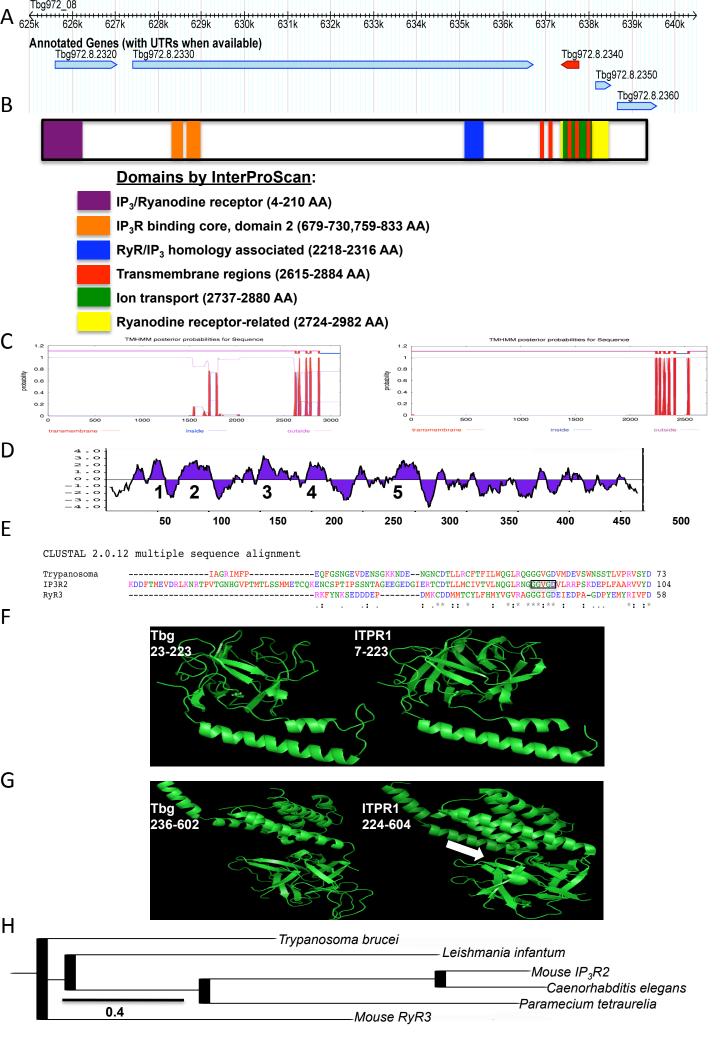



Figure 2: Molecular characterization of putative IP<sub>3</sub> receptor (IP<sub>3</sub>R) from *Trypanosoma brucei* 

- **(A)** Schematic representation of macronuclear sequence of putative IP<sub>3</sub>R gene *Tbg972.8.2330* from *Trypanosoma brucei*.
- The *Tbg972.8.2330* gene (chromosome 8) is flanked upstream by gene *Tbg972.8.2320* (conserved hypothetical protein) and downstream by gene *Tbg972.8.2360* (putative RNA-binding protein RBP10). The *Tbg972.8.2330* gene is intronless.
- (B) Domain structure of the *Trypanosoma brucei* putative IP<sub>2</sub>R.
- Protein BLAST search (<a href="http://blast.ncbi.nlm.nih.gov/Blast.cgi">http://blast.ncbi.nlm.nih.gov/Blast.cgi</a>) against reference proteins from mouse (*Mus musculus*) showed that the protein encoded by *Tbg972.8.2330* had highest sequence similarity with IP<sub>3</sub>R type 2 (IP<sub>3</sub>R2) and Ryanodine receptor type 3 (RyR3) which were further used for global sequence similarity and identity analysis by the SIAS server (<a href="http://imed.med.ucm.es/Tools/sias.html">http://imed.med.ucm.es/Tools/sias.html</a>). Such analysis revealed that the putative IP<sub>3</sub>R from *Trypanosoma brucei* had a global sequence identity and similarity of 11.75% and 49.95% respectively with IP<sub>3</sub>R2 and 5.33% and 9.3% respectively with RyR3.
- Domain analysis was conducted using the InterProScan server (<a href="http://www.ebi.ac.uk/Tools/pfa/iprscan/">http://www.ebi.ac.uk/Tools/pfa/iprscan/</a>) and transmembrane domains were determined by the TMHMM server (<a href="http://www.cbs.dtu.dk/services/TMHMM/">http://www.cbs.dtu.dk/services/TMHMM/</a>. Results are presented relative to scale of the full-length amino acid (AA) sequence of the protein.
- **(C)** Analysis of transmembrane domains of putative IP<sub>3</sub>R from *Trypanosoma brucei* (left) and mouse IP<sub>3</sub>R2 (right) using the TMHMM server (<a href="http://www.cbs.dtu.dk/services/TMHMM/">http://www.cbs.dtu.dk/services/TMHMM/</a>).
- **(D)** Hydrophobicity analysis of the transmembrane domain of putative IP<sub>3</sub>R from *Trypanosoma brucei*. Hydrophobicity plots reveal the presence of 5 transmembrane regions compared to 6 that are present in the mouse IP<sub>3</sub>R2 (see Panel C (right)).
- (E) Clustal W2.0.12 alignment of the amino acid sequence between transmembrane domains 4 and 5 of putative IP<sub>3</sub>R from *Trypanosoma brucei* and the amino acid sequence between transmembrane domains 5 and 6 of mouse IP<sub>3</sub>R2 and mouse RyR3. The selectivity filter of mouse IP<sub>3</sub>R2 is shown as boxed text.
- **(F)** Modeling of the putative IP<sub>3</sub>R-ligand binding suppressor domain of *Trypanosoma brucei* using the EsyPred3D homology-modelling server (<a href="http://www.fundp.ac.be/sciences/biologie/urbm/bioinfo/esypred/">http://www.fundp.ac.be/sciences/biologie/urbm/bioinfo/esypred/</a>). Structure of the IP<sub>3</sub>R-ligand binding suppressor domain of mouse IP<sub>3</sub>R type 1 (right), (ITPR1; <a href="http://www.pdb.org/pdb/explore/explore.do?structureId=1XZZ">http://www.pdb.org/pdb/explore/explore.do?structureId=1XZZ</a>) (Bosanac *et al.*, 2005) and model of the *Trypanosoma brucei* (Tbg; left) homologous region. Numbers indicate the amino acid residues used.
- (G) Modeling of the putative IP<sub>3</sub>R-ligand binding core from *Trypanosoma brucei* using the EsyPred3D homology-modelling server (<a href="http://www.fundp.ac.be/sciences/biologie/urbm/bioinfo/esypred/">http://www.fundp.ac.be/sciences/biologie/urbm/bioinfo/esypred/</a>). Structure of the IP<sub>3</sub>R-ligand binding core of mouse IP<sub>3</sub>R type 1 (right), (ITPR1; <a href="http://www.pdb.org/pdb/explore/explore.do?structureId=1N4K">http://www.pdb.org/pdb/explore/explore.do?structureId=1N4K</a>) (Bosanac *et al.*, 2002) and model of the *Trypanosoma brucei* (Tbg; left) homologous region. Numbers indicate the amino acid residues used. The arrow indicates the IP<sub>3</sub> binding site.
- (H) Evolutionary relationship of the putative IP<sub>3</sub>Rs from *Leishmania infantum* and *Trypanosoma brucei*. Predictions from multiple sequence alignments are shown in a neighbor-joining tree with 1000 bootstrap replicates generated with the PHYLIP software package (<a href="http://mobyle.pasteur.fr/cgi-bin/portal.py">http://mobyle.pasteur.fr/cgi-bin/portal.py</a>). Sequence representing the mammalian IP<sub>3</sub>R was from *Mus musculus* (Mouse IP<sub>3</sub>R2 (IP<sub>3</sub>R type 2, AB182288). Sequence representing the mammalian Ryanodine receptor was from *Mus musculus* (Mouse RyR3 (Ryanodine receptor type 3, NM\_177652). Other metazoa IP<sub>3</sub>R sequence was from *Caenorhabditis elegans* (AJ243179) and protozoa IP<sub>3</sub>R sequence was from *Paramecium tetraurelia* (CR932323). Evolutionary distances are indicated by the scale bar.